Natural selection in the chicken host identifies 3-deoxy-D-manno-octulosonic acid kinase residues essential for phosphorylation of Pasteurella multocida lipopolysaccharide.

نویسندگان

  • Marina Harper
  • Andrew D Cox
  • Frank St Michael
  • Mark Ford
  • Ian W Wilkie
  • Ben Adler
  • John D Boyce
چکیده

Pasteurella multocida is the causative agent of a number of diseases in animals, including fowl cholera. P. multocida strains simultaneously express two lipopolysaccharide (LPS) glycoforms (glycoforms A and B) that differ only in their inner core structure. Glycoform A contains a single 3-deoxy-d-manno-octulosonic acid (Kdo) residue that is phosphorylated by the Kdo kinase, KdkA, whereas glycoform B contains two unphosphorylated Kdo residues. We have previously shown that P. multocida mutants lacking the heptosyltransferase, HptA, produce full-length glycoform B LPS and a large amount of truncated glycoform A LPS, as they cannot add heptose to the glycoform A inner core. These hptA mutants were attenuated in chickens because the truncated LPS made them vulnerable to host defense mechanisms, including antimicrobial peptides. However, here we show that birds inoculated with high doses of the hptA mutant developed fowl cholera and the P. multocida isolates recovered from diseased birds no longer expressed truncated LPS. Sequencing analysis revealed that the in vivo-derived isolates had mutations in kdkA, thereby suppressing the production of glycoform A LPS. Interestingly, a number of the spontaneous KdkA mutant strains produced KdkA with a single amino acid substitution (A112V, R123P, H168Y, or D193N). LPS structural analysis showed that complementation of a P. multocida kdkA mutant with wild-type kdkA restored expression of glycoform A to wild-type levels, whereas complementation with any of the mutated kdkA genes did not. We conclude that in P. multocida KdkA, the amino acids A112, R123, H168, and D193 are critical for Kdo kinase function and therefore for glycoform A LPS assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases.

Lipopolysaccharide (LPS) is a critical virulence determinant in Pasteurella multocida and a major antigen responsible for host protective immunity. In other mucosal pathogens, variation in LPS or lipooligosaccharide structure typically occurs in the outer core oligosaccharide regions due to phase variation. P. multocida elaborates a conserved oligosaccharide extension attached to two different,...

متن کامل

Characterization of the lipopolysaccharide from Pasteurella multocida Heddleston serovar 9: identification of a proposed bi-functional dTDP-3-acetamido-3,6-dideoxy-α-D-glucose biosynthesis enzyme.

Pasteurella multocida strains are classified into 16 different lipopolysaccharide (LPS) serovars using the Heddleston serotyping scheme. Ongoing studies in our laboratories on the LPS aim to determine the core oligosaccharide (OS) structures expressed by each of the Heddleston type strains and identify the genes and transferases required for the biosynthesis of the serovar-specific OSs. In this...

متن کامل

Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase.

Lipopolysaccharide, lipooligosaccharide (LOS), or endotoxin is important in bacterial survival and the pathogenesis of gram-negative bacteria. A necessary step in endotoxin biosynthesis is 3-deoxy-D-manno-octulosonic acid (Kdo) glycosylation of lipid A, catalyzed by the Kdo transferase KdtA (WaaA). In enteric gram-negative bacteria, this step is essential for survival. A nonpolar kdtA::aphA-3 m...

متن کامل

Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence.

Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to complement-mediated killing. The lipopolysaccharide (LPS) structure ...

متن کامل

Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy-D-manno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation.

Bordetella pertussis lipopolysaccharide (LPS) contains a single 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo) residue, whereas LPS from Escherichia coli contains at least two. Here we report that B. pertussis waaA encodes an enzyme capable of transferring only a single Kdo during the biosynthesis of LPS and that this activity is sufficient to complement an E. coli waaA mutation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 78 9  شماره 

صفحات  -

تاریخ انتشار 2010